The halo model and cosmological power spectra

Alexander Mead - University of British Columbia

Collaborators - John Peacock, Catherine Heymans, Shahab Joudaki, Alan Heavens, Lucas Lombriser

Introduction

- Aim to understand the distribution of large-scale structure (matter) in the late (z < 2) Universe.
- Structure is traced out by galaxies, which we can see, but consists of a dark matter exoskeleton, often called the 'cosmic web'
- This structure can be simulated easily, and measured directly via weak gravitational lensing
- Different cosmological models predict very different patterns for the cosmic web, and can thus be distinguished using weak lensing.

The problem

- Structure in the late Universe is non-linear and complex
- Initial perturbations are linear and Gaussian
- Gravitational collapse makes things non-linear and non-Gaussian
- Late Universe must be modelled (e.g., weak lensing)
- Necessary to do this as a function of model (DE, MG, massive neutrinos)

The problem

- Structure in the late Universe is non-linear and complex
- Initial perturbations are linear and Gaussian
- Gravitational collapse makes things non-linear and non-Gaussian
- Late Universe must be modelled (e.g., weak lensing)
- Necessary to do this as a function of model (DE, MG, massive neutrinos)

The problem

- Structure in the late Universe is non-linear and complex
- Initial perturbations are linear and Gaussian
- Gravitational collapse makes things non-linear and non-Gaussian
- Late Universe must be modelled (e.g., weak lensing)
- Necessary to do this as a function of model (DE, MG, massive neutrinos)

http://aether.lbl.gov/Weak_lensing/weak_theory.html

http://aether.lbl.gov/Weak_lensing/weak_theory.html

Linear perturbation theory

Linear perturbation theory

$$1 + \delta(\mathbf{x}) = \frac{\rho(\mathbf{x})}{\bar{\rho}}$$

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}_{\mathrm{m}}\delta$$

$$\overset{\text{offer of }}{\longrightarrow}$$

$$\delta \propto a$$

$$\overset{\text{offer of }}{\longrightarrow}$$

$$\overset{\text{offer of }}$$

The power spectrum of matter fluctuations

- Represent the smooth density field with 'N' particles
 - I. Calculate the gravitational forces
 - 2. Move the particles
 - 3. Repeat

- $\ddot{\mathbf{r}} + 2H\dot{\mathbf{r}} = -\frac{1}{a^2}\nabla\Phi$
- Periodic boundaries
- Expanding box -

Simulation limitations

- Solve gravity only problem to high accuracy
- Expensive in terms of computing power
- It will never be possible to run accurate simulations for every model under consideration
- Investigating cosmological parameter space:
 - ACDM
 - Dark Energy (interacting?)
 - Massive neutrinos
 - Dark matter types
 - Modified gravity
 - Baryons?

The halo model

- Can be used to predict the clustering of matter (as well as of haloes or of galaxies) in the Universe
- Distinct from HALOFIT (Smith et al. 2003)

$$\Delta_{1H}^{2}(k) = 4\pi \left(\frac{k}{2\pi}\right)^{3} \frac{1}{\bar{\rho}^{2}} \int_{0}^{\infty} M^{2} W^{2}(k, M) f(M) \, dM$$
Ingredients
$$f(v) = A \left[1 + \frac{1}{(av^{2})^{p}}\right] e^{-av^{2}/2}$$
Halo mass function
$$\nu = \frac{\delta_{c}}{\sigma(M)}$$
Peak to mass relation
$$\rho(r) = \frac{\rho_{N}}{(r/r_{s})(1 + r/r_{s})^{2}}$$
Halo density profiles
$$r_{v} = \left(\frac{3M}{4\pi\Delta_{v}\bar{\rho}}\right)^{1/3}$$
Halo radius
$$r_{v} = A \frac{1 + z_{f}}{1 + z}$$

Original

Duffy concentration-mass relation 10³ Simulation +10² z=0.0 z=1.0 10¹ $\Delta^2(k)$ 10⁰ 10⁻¹ 10⁻² $\Delta^2 {\rm HM}/\Delta^2 {\rm emu}$ 1.2 z=0.0 0.8 $\Delta^2 {\rm HM}/\Delta^2 {\rm emu}$ 1.2 z=1.0 1 0.8 0.01 0.1 10 1 $k/(h Mpc^{-1})$

Tinker mass function

Standard halo model

Problems

- Perturbation theory at large scales
- Transition region is problematic (voids, under-densities, NL bias)
- Filamentary structure missing
- Halo asphericity ignored
- Tidal alignment of haloes
- Assumes all objects virialized
- Halo substructure ignored
 - Scatter in halo properties at fixed mass ignored

Method

- We want to remedy the inaccuracy of the halo model without breaking it
- Fixing all of the problems whilst being fully consistent would be hard
- Instead opt for the simpler goal of generating 'effective haloes', whose simple halo power spectrum accurately matches that of simulations

Cosmic Emu (simulations) fit and comparison (Heitmann 2014)

Baryonic feedback

Baryonic feedback

From Joudaki et al. (CFHTLenS revisited; 1601.05786)

Dark energy $w = w_0 + (1 - a)w_a$

Massive neutrinos

Summary

- Matter power spectra accurate to 5% across a wide range of cosmological models (massive nu, dark energy)
- Publications
 - <u>http://mnras.oxfordjournals.org/content/454/2/1958.full.pdf</u>
 - http://mnras.oxfordjournals.org/content/459/2/1468.full.pdf
- Code available:
 - <u>https://github.com/alexander-mead/HMcode</u>
- Integrated into CAMB (halofit_ppf.f90 module)
- Relatively easy to add standard model extensions

Spherical collapse model

- 5% accuracy can be improved on if we work only with the power spectrum 'response'
- Consider models with fixed linear spectrum shape and amplitude, but that could differ via their growth history (e.g., dark energy)
- Look at differences in spherical-collapse model predictions.

Spherical-collapse model

 $\ddot{\delta} + 2H\dot{\delta} - \frac{4}{3}\frac{\delta^2}{1+\delta} = 4\pi G\bar{\rho}\delta(1+\delta)$

Spherical-collapse model

 $\ddot{\delta} + 2H\dot{\delta} - \frac{4}{3}\frac{\delta^2}{1+\delta} = 4\pi G\bar{\rho}\delta(1+\delta)$

Spherical-collapse model

 $\ddot{\delta} + 2H\dot{\delta} - \frac{4}{3}\frac{\delta^2}{1+\delta} = 4\pi G\bar{\rho}\delta(1+\delta)$

 $\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}\delta$

а

Table 1. Cosmological parameters of the simulations used in this paper. Dynamical dark energy is parameterised via $w(a) = w_0 + (1-a)w_a$ and is taken to be spatially homogeneous and thus only affects the background expansion. All simulations use 512^3 particles in cubes of size $L = 200 h^{-1}$ Mpc, and start from initial conditions with identical mode phases, but with initial amplitudes adjusted to ensure $\sigma_8 = 0.8$ at z = 0. The shape of the linear spectrum used to generate the initial conditions is identical in each case, and was generated using CAMB (Lewis et al. 2000) with cosmological parameters $\Omega_m = 0.3$, $\Omega_w = 1 - \Omega_m$, $\Omega_b = 0.05$, h = 0.7, $n_s = 0.96$ and w = -1. For each cosmology, I ran 3 different realisations of initial conditions. Also shown are the spherical-model parameters δ_c and Δ_v from a numerical calculation.

Cosmology	$\Omega_{\rm m}$	Ω_w	w ₀	wa	$\delta_{\rm c}$	$\Delta_{\rm v}$
ΛCDM	0.3	0.7	-1	0	1.6755	310.1
EdS	1.0	0.0	-	-	1.6866	177.7
Open	0.3	0.0	-	-	1.6513	402.0
DE1	0.3	0.7	-0.7	0	1.6695	342.7
DE2	0.3	0.7	-1.3	0	1.6787	282.4
DE3	0.3	0.7	-1	0.5	1.6724	318.5
DE4	0.3	0.7	-1	-0.5	1.6773	301.6
DE5	0.3	0.7	-0.7	-1.5	1.6774	313.3
DE6	0.3	0.7	-1.3	0.5	1.6771	290.1

Spherical collapse model

Spherical collapse model

Summary

- Matter 'power spectrum response' accurate to 1-2% for k < 5h Mpc⁻¹ (Euclid or LSST lensing accuracy)
- No fitted parameters
- Publication:
 - http://mnras.oxfordjournals.org/content/early/2016/09/13/ mnras.stw2312.full.pdf
- Code available:
 - https://github.com/alexander-mead/collapse
- Papers also contain accurate fitting functions for δ_c and Δ_v for a wide range of dark energy models